社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

【深度学习】有没有什么可以节省大量时间的 Deep Learning 效率神器?

机器学习初学者 • 1 年前 • 293 次点击  
载自 | 金瀛若愚@知乎
来源 | https://www.zhihu.com/question/384519338/answer/2620482813

1

『每个实验保存完整config + wandb远程追踪』

还在给model取巨长的文件名来记录其超参吗?out了。wandb可以把config和结果曲线同步云端供横向评比和查看。同步云端的代码:

def wandb_init(cfg: DictConfig):
    wandb.init(
        project='best paper',
        group=cfg.exp_group,
        name=cfg.exp_name,
        notes=cfg.exp_desc,
        save_code=True,
        config=OmegaConf.to_container(cfg, resolve=True)
    )
    OmegaConf.save(config=cfg, f=os.path.join(cfg.ckpt_dir, 'conf.yaml'))

这里的OmegaConf下面会讲到。想不起来某个实验的model存在哪了?看wandb的界面查找每个config值

wandb 查看config

对应每个实验的curves

wandb查看曲线


2

『Hydra+OmegaConf配置管理』

OmegaConf是Meta出的配置管理工具,可将yaml文件转成有对应变量名的Python的class或dict。支持默认值、合并和override、导出成yaml或json等,十分好用。你再也不用手写配置管理了。

比如:

blob_root: /yjblob
exp_name: best_paper_2
ckpt_dir: ${.blob_root}/${.exp_name}/ckpt
log_dir: ${.blob_root}/${.exp_name}/log

上面是config.yaml的片段,OmegaConf.resolve(cfg) 一句即可把blob_root和exp_name 的值填进 ckpt_dir里。而普通的yaml是不支持变量的。

Hydra是Meta出的实验提交工具,支持在命令行里动态修改OmegaConf里面的数值。Hydra支持一个config里引用另一个config,于是你可以很容易的切换用db=mysql还是db=postgresql:

├── conf
│   ├── config.yaml
│   ├── db
│   │   ├── mysql.yaml
│   │   └── postgresql.yaml
│   └── __init__.py
└── my_app.py 

而且,这个OmegaConf的配置(DictConfig类型)可以转成Python的dict然后传给wandb,打通全场(见第一节的示例代码)。


3

『Plotly导出可交互的曲线』

Matplotlib不支持交互,生成的曲线无法还原每个点的值。Tensorboard和wandb的网页 支持交互,但不容易导出,而且其内置的precision-recall曲线等函数无法深度定制,只适合于画一些loss和lr曲线。Plotly就很强了。

鼠标浮动,查看内容

当然也可以做定制化的precision-recall曲线。比如我希望看不同threshold下的precision, recall和false positive ratio,这样的定制化曲线wandb等并不支持,就可以用plotly




    
df = DataFrame({
    'thres': thresholds,
    'prec': prec_data1,
    'recl': recl_data1,
    'fp': fp_data2
})
df = df.melt(id_vars=['thres'], value_vars=['prec''recl''fp'], var_name='curves')
fig = px.line(df, x='thres', y='value', color='curves', markers=True)
fig.update_xaxes(range=[0, 1])
fig.update_yaxes(range=[0, 1])
fig.update_traces(mode="markers+lines", hovertemplate=None)
fig.update_layout(hovermode="x")
fig.write_html(os.path.join(self.cfg.ckpt_dir, 'curves.html'), auto_play = False)

里面的hovermode指定移动鼠标时显示相同x值的不同y值:

这还没完,wandb支持把plotly生成的可交互网页嵌入到wandb里

import wandb
import plotly.express as px

# Initialize a new run
run = wandb.init(project="log-plotly-fig-tables", name="plotly_html")

# Create a table
table = wandb.Table(columns = ["plotly_figure"])

# Create path for Plotly figure
path_to_plotly_html = "./plotly_figure.html"

# Example Plotly figure
fig = px.scatter(x = [0, 1, 2, 3, 4], y = [0, 1, 4, 9, 16])

# Write Plotly figure to HTML
fig.write_html(path_to_plotly_html, auto_play = False) # Setting auto_play to False prevents animated Plotly charts from playing in the table automatically

# Add Plotly figure as HTML file into Table
table.add_data(wandb.Html(path_to_plotly_html))

# Log Table
run.log({"test_table": table})
wandb.finish()

以上便完成了Hydra+OmegaConf+wandb+plotly的打通。


4

『使用远程GPU服务器/集群的一些技巧』

如果要使用远程的服务器,常见问题在于远程debug、代码从本地同步到远程以及ssh断线重连问题。这些可以使用VS Code解决。

  1. 可以设置用得到的所有远程服务器,每个服务器配置好ssh,便于随时登录。下图的REMOTE EXPLORER里除了SSH Targets还有Containers,即可以直接ssh到服务器的docker container里。container的运行命令可以设置vs code自动完成。
  1. 每个服务器都能从本地登录的git账户里clone代码。Clone之后下次可以直接远程打开这个repo
  1. 编辑Run and Debug设置(launch.json),可以预先设置training,testing等实验对应的命令行参数和环境变量,以后点对应的按钮就直接运行该实验。不用每次手动复制参数
  1. 在repo里开一个文件夹,加入gitignore。每次做可视化图片的时候,把图片存到这个文件夹,即可通过vscode远程看图,不需要每次ssh下载到本地。VS Code也支持内建ipynb文件来一边写一边运行。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/161881
 
293 次点击