社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

深度学习特征提取魔改版太强了!发文香饽饽!

深度之眼 • 9 月前 • 152 次点击  

要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。

再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。

目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度学习特征提取技术,所以这方向同样也成了发文热门选择,想发论文的同学可以考虑。

最近这方向一些阶段性的结果已经发表了,如果idea难找可以参考参考,我这边直接帮大家省了查找的时间,已经根据上述四种常用方法分别整理了12篇最新的论文,开源的代码已附,大家别错过哦。

扫码添加小享,回复“改特征提取

免费获取全部论文+开源代码

基于transformer

T-frex: A transformer-based feature extraction method from mobile app reviews

方法:论文提出一种基于Transformer的特征提取方法,称为T-FREX。该方法使用大型语言模型(LLMs)对移动应用程序评论进行基于标记分类的方法进行了实证评估,以支持特征提取,在不同的数据配置(领域外 vs 领域内)和多个应用程序类别下探索和讨论了多个模型(BERT,RoBERTa,XLNet)的性能。

创新点:

  • 通过使用LLMs进行基于标记分类的方法,支持移动应用程序评论中的特征提取,提出了一种全新的自动化方法T-FREX。
  • 提出了将特征提取重新定义为NER任务的方法,通过LLMs对移动应用程序评论中的标记进行分类,从而提高了特征提取的性能。
  • 创造性地利用真实用户的地面真实特征注释和外部人员评估,扩展了特征领域的范围和知识体系。

基于CNN

Prosperous Human Gait Recognition: an end-to-end system based on pre-trained CNN features selection

方法:论文提出了一种基于CNN的特征提取方法,用于人体步态识别。该方法包括原始视频帧的预处理、使用预训练的CNN模型Densent-V3进行CNN特征提取、基于混合选择方法对提取的向量进行特征降维,最后使用监督学习方法进行识别。

创新点:

  • 提出了一种新颖的基于深度学习的人体步态识别方法,通过预训练的CNN模型提取特征,并通过融合多个层次的特征和Firefly算法和Skewness方法进行特征选择,最终使用OAMSVM进行识别。
  • 在CASIA B数据集的三个不同角度的评估中,分别获得了94.3%,93.8%和94.7%的识别准确率,相较于现有的技术有显著的提升。

扫码添加小享,回复“改特征提取

免费获取全部论文+开源代码

基于LSTM

A RSBU-LSTM network for radio frequency fingerprint identification relying on multiple features

方法:论文提出了一种基于长短期记忆网络的特征提取方法,用于无线电频率指纹识别。RSBU-LSTM网络模型使用了多个特征和多个RSBU来提取信号特征并抑制噪声。同时,采用LSTM提取非相邻周期信号的相关特征,并通过全连接(FC)层进行设备识别。

创新点:

  • 不同于直接将数据输入到卷积神经网络(CNN),该文考虑了信号的实部、虚部和相位信息,使得信号输入更加全面。
  • 通过使用多个残差收缩建模单元(RSBU)抑制噪声并提取相关特征,并结合长短期记忆(LSTM)提取非相邻信号周期和多个信号周期之间的相关特征,实现了对无线设备的个体识别。

基于GAN

Enhancing quality of pose-varied face restoration with local weak feature sensing and gan prior

方法:论文提出了一种基于生成对抗网络(GAN)的特征提取方法,用于盲人脸恢复。该网络利用局部弱特征感知和生成对抗网络(GAN)先验来增强变化姿势人脸图像的质量,采用混合多路径残差块(MMRB)来提取输入图像的弱纹理特征,通过跳跃连接实现不同尺度特征的空间交互和聚合。

创新点:

  • 提出了一个全新的盲目人脸修复网络,结合了生成式人脸先验,可以提高具有复杂面部姿势和严重退化的人脸图像的质量。
  • 设计了一种新颖的自监督训练策略,该策略在StyleGAN2先验模型中冻结了预训练的鉴别器(FreezeD),并与编解码器共同微调生成器。
  • 提出了一种MMRB层,它采用两个分支的稀疏结构来提取不同尺度的特征,并通过跳跃连接实现共享特征的空间交互和聚合。

扫码添加小享,回复“改特征提取

免费获取全部论文+开源代码

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/174077
 
152 次点击