社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  DATABASE

为什么 MySQL 不推荐使用雪花 id 和 uuid 做主键 ?

Java架构师技术 • 4 周前 • 34 次点击  
以下文章来源Java架构师技术,回复”Spring“获惊喜礼包
来源:程序员追风  链接:cnblogs.com/boboxing/p/14479020.html
上一篇推文:面试了一个45岁的程序员,他要月薪2万,我同意了。结果面试完送他到电梯口,他说14薪月薪1.8万也行。
  

大家好,我是Java架构师

在MySQL中设计表的时候,MySQL官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析这个问题,探讨一下内部的原因。


MySQL和程序实例

1、要说明这个问题,我们首先来建立三张表

分别是user_auto_key,user_uuid,user_random_key,分别表示自动增长的主键,uuid作为主键,随机key作为主键,其它我们完全保持不变。根据控制变量法,我们只把每个表的主键使用不同的策略生成,而其他的字段完全一样,然后测试一下表的插入速度和查询速度:

注:这里的随机key其实是指用雪花算法算出来的前后不连续不重复无规律的id:一串18位长度的long值

id自动生成表:

用户uuid表

随机主键表:

2、光有理论不行,直接上程序,使用spring的jdbcTemplate来实现增查测试

技术框架:

springboot+jdbcTemplate+junit+hutool,

程序的原理就是连接自己的测试数据库,然后在相同的环境下写入同等数量的数据,来分析一下insert插入的时间来进行综合其效率,为了做到最真实的效果,所有的数据采用随机生成,比如名字、邮箱、地址都是随机生成,程序已上传自gitee,地址链接在文底。

package com.wyq.mysqldemo;
import cn.hutool.core.collection.CollectionUtil;
import com.wyq.mysqldemo.databaseobject.UserKeyAuto;
import com.wyq.mysqldemo.databaseobject.UserKeyRandom;
import com.wyq.mysqldemo.databaseobject.UserKeyUUID;
import com.wyq.mysqldemo.diffkeytest.AutoKeyTableService;
import com.wyq.mysqldemo.diffkeytest.RandomKeyTableService;
import com.wyq.mysqldemo.diffkeytest.UUIDKeyTableService;
import com.wyq.mysqldemo.util.JdbcTemplateService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import  org.springframework.boot.test.context.SpringBootTest;
import org.springframework.util.StopWatch;
import java.util.List;
@SpringBootTest
class MysqlDemoApplicationTests {

    @Autowired
    private JdbcTemplateService jdbcTemplateService;

    @Autowired
    private AutoKeyTableService autoKeyTableService;

    @Autowired
    private UUIDKeyTableService uuidKeyTableService;

    @Autowired
    private RandomKeyTableService randomKeyTableService;


    @Test
    void testDBTime() {

        StopWatch stopwatch = new StopWatch("执行sql时间消耗");


        /**
         * auto_increment key任务
         */

        final String insertSql = "INSERT INTO user_key_auto(user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?)";

        List insertData = autoKeyTableService.getInsertData();
        stopwatch.start("自动生成key表任务开始");
        long start1 = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql, insertData, false);
            System.out.println(insertResult);
        }
        long end1 = System.currentTimeMillis();
        System.out.println("auto key消耗的时间:" + (end1 - start1));

        stopwatch.stop();


        /**
         * uudID的key
         */

        final String insertSql2 = "INSERT INTO user_uuid(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";

        List insertData2 = uuidKeyTableService.getInsertData();
        stopwatch.start("UUID的key表任务开始");
        long begin = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql2, insertData2, true);
            System.out.println(insertResult);
        }
        long over = System.currentTimeMillis();
        System.out.println("UUID key消耗的时间:" + (over - begin));

        stopwatch.stop();


        /**
         * 随机的long值key
         */

        final String insertSql3 = "INSERT INTO user_random_key(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
        List insertData3 = randomKeyTableService.getInsertData();
        stopwatch.start("随机的long值key表任务开始");
        Long start = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql3, insertData3, true);
            System.out.println(insertResult);
        }
        Long end = System.currentTimeMillis();
        System.out.println("随机key任务消耗时间:" + (end - start));
        stopwatch.stop();


        String result = stopwatch.prettyPrint();
        System.out.println(result);
    }
}

3、程序写入结果

user_key_auto写入结果:

user_random_key写入结果:

user_uuid表写入结果:

4、效率测试结果

在已有数据量为130W的时候:我们再来测试一下插入10w数据,看看会有什么结果:

可以看出在数据量100W左右的时候,uuid的插入效率垫底,并且在后序增加了130W的数据,uudi的时间又直线下降。时间占用量总体可以打出的效率排名为:auto_key>random_key>uuid,uuid的效率最低,在数据量较大的情况下,效率直线下滑。那么为什么会出现这样的现象呢?带着疑问,我们来探讨一下这个问题:


使用uuid和自增id的索引结构对比

1、使用自增id的内部结构

自增的主键的值是顺序的,所以Innodb把每一条记录都存储在一条记录的后面。当达到页面的最大填充因子时候(innodb默认的最大填充因子是页大小的15/16,会留出1/16的空间留作以后的   修改):

①下一条记录就会写入新的页中,一旦数据按照这种顺序的方式加载,主键页就会近乎于顺序的记录填满,提升了页面的最大填充率,不会有页的浪费

②新插入的行一定会在原有的最大数据行下一行,mysql定位和寻址很快,不会为计算新行的位置而做出额外的消耗

③减少了页分裂和碎片的产生

2、使用uuid的索引内部结构

因为uuid相对顺序的自增id来说是毫无规律可言的,新行的值不一定要比之前的主键的值要大,所以innodb无法做到总是把新行插入到索引的最后,而是需要为新行寻找新的合适的位置从而来分配新的空间。这个过程需要做很多额外的操作,数据的毫无顺序会导致数据分布散乱,将会导致以下的问题:

①写入的目标页很可能已经刷新到磁盘上并且从缓存上移除,或者还没有被加载到缓存中,innodb在插入之前不得不先找到并从磁盘读取目标页到内存中,这将导致大量的随机IO

②因为写入是乱序的,innodb不得不频繁的做页分裂操作,以便为新的行分配空间,页分裂导致移动大量的数据,一次插入最少需要修改三个页以上

③由于频繁的页分裂,页会变得稀疏并被不规则的填充,最终会导致数据会有碎片

在把随机值(uuid和雪花id)载入到聚簇索引(innodb默认的索引类型)以后,有时候会需要做一次OPTIMEIZE TABLE来重建表并优化页的填充,这将又需要一定的时间消耗。

结论:使用innodb应该尽可能的按主键的自增顺序插入,并且尽可能使用单调的增加的聚簇键的值来插入新行

3、使用自增id的缺点

那么使用自增的id就完全没有坏处了吗?并不是,自增id也会存在以下几点问题:

①别人一旦爬取你的数据库,就可以根据数据库的自增id获取到你的业务增长信息,很容易分析出你的经营情况

②对于高并发的负载,innodb在按主键进行插入的时候会造成明显的锁争用,主键的上界会成为争抢的热点,因为所有的插入都发生在这里,并发插入会导致间隙锁竞争

③Auto_Increment锁机制会造成自增锁的抢夺,有一定的性能损失

附:

Auto_increment的锁争抢问题,如果要改善需要调优innodb_autoinc_lock_mode的配置

总结


本篇博客首先从开篇的提出问题,建表到使用jdbcTemplate去测试不同id的生成策略在大数据量的数据插入表现,然后分析了id的机制不同在mysql的索引结构以及优缺点,深入的解释了为何uuid和随机不重复id在数据插入中的性能损耗,详细的解释了这个问题。在实际的开发中还是根据mysql的官方推荐最好使用自增id,mysql博大精深,内部还有很多值得优化的点需要我们学习。


福利来袭:

读者经常私信轰炸:“别人用AI写周报/做PPT/做视频,我咋学不会?”
于是我干了件大事,我决定搞一个小产品——DeepSeek场景实操合集,和大家一起探索DeepSeek的应用。

这份实操集包含:
1、 一份DeeoSeek资料宝库合集
3、100个场景实操案例
3、一个DeepSeek交流群(服务周期一年)
4、一份全网最全的100个AI赋能(场景应用+工具推荐)
这个小产品3月12日正式交付。现在正在预售,只需29.9元。
👉 扫码加我微信,转账29.9元,即可锁定资格,3月12日拉群,提供服务。

图片


上周,又劝退十几个了。。。

ChatGPT 4.0 国内直接用 !!!

最后给大家推荐一个ChatGPT 4.0国内网站,是我们团队一直在使用的,我们对接是OpenAI官网的账号,给大家打造了一个一模一样ChatGPT,很多粉丝朋友现在也都通过我拿这种号,价格不贵,关键还有售后。

一句话说明:用官方一半价格的钱,一句话说明:用跟官方 ChatGPT4.0 一模一样功能,无需魔法,无视封号,不必担心次数不够。

最大优势:可实现会话隔离!突破限制:官方限制每个账号三小时可使用40次4.0本网站可实现次数上限之后,手动切换下一个未使用的账号【相当于一个4.0帐号,同享受一百个账号轮换使用权限】

为了跟上AI时代我干了一件事儿,我创建了一个知识星球社群:AI俱乐部与副业。想带着大家一起探索ChatGPT和新的AI时代

很多小伙伴搞不定ChatGPT账号,于是我们决定,凡是这三天之内加入ChatPGT的小伙伴,我们直接送一个正常可用的永久ChatGPT独立账户。

不光是增长速度最快,我们的星球品质也绝对经得起考验,短短一个月时间,我们的课程团队发布了8个专栏、18个副业项目

简单说下这个星球能给大家提供什么:


1、不断分享如何使用ChatGPT来完成各种任务,让你更高效地使用ChatGPT,以及副业思考、变现思路、创业案例、落地案例分享。

2、分享ChatGPT的使用方法、最新资讯、商业价值。

3、探讨未来关于ChatGPT的机遇,共同成长。

4、帮助大家解决ChatGPT遇到的问题。

5、提供一整年的售后服务,一起搞副业


星球福利:

1、加入星球4天后,就送ChatGPT独立账号。

2、邀请你加入ChatGPT会员交流群。

3、赠送一份完整的ChatGPT手册和66个ChatGPT副业赚钱手册。

4、赠送一个月的ChatGPT 4.0 Plus系统池账号,价值98元。

5、赠送一份总价值5000元的ChatGPT视频教程。


其它福利还在筹划中...不过,我给你大家保证,加入星球后,收获的价值会远远大于今天加入的门票费用 !


本星球第二期原价 399,目前有优惠券,早鸟价159,每超过50人涨价10元,星球马上要来一波大的涨价,如果你还在犹豫,可能最后就要以更高价格加入了。。


早就是优势。建议大家尽早以便宜的价格加入!


最后,整理了300多套项目,赠送读者。扫码下方二维码,后台回复赚钱即可获取。


--END--

来源:波波烤鸭

链接:dpb-bobokaoya-sm.blog.csdn.net/artiacle/details/103409430

版权申明:内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢!

往期惊喜:

何谓架构?

一个很酷的后台权限管理系统

一个很酷的博客系统

一个很酷的快速开发代码生成器系统


扫码关注我们的Java架构师技术

带你全面深入Java

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/181761
 
34 次点击