[1]https://baijiahao.baidu.com/s?id=1727899048849659504&wfr=spider&for=pc(访问时间:2023.9)
[2] Wu M, Wu Z, Ge W, et al. Identification of sensitivity indicators of urban rainstorm flood disasters: A case study in China[J]. Journal of Hydrology, 2021, 599:126393
[3] Yang T H, Yang S C, Ho J Y, et al, Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons[J]. Journal of Hydrology, 2015, 520:367-378
[4] 扈海波,轩春怡,诸立尚.北京地区城市暴雨积涝灾害风险预评估[J].应用气象学报,2013,24(01):99-108.
[5] 朱祖乐.基于WebGL的郑州市区积水路段暴雨洪水三维场景模拟[D].郑州大学,2016.
[6] Nkeki F N, Bello E I, Agbaje I G. Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria[J]. International Journal of Disaster Risk Reduction, 2022, 77: 103097.
[7] Js A, Pka B, Sd A, et al, Hydro-meteorological risk assessment methods and management by nature-based solutions[J]. Science of The Total Environment, 696:133936-133936
[8] 黄华兵,王先伟,柳林.城市暴雨内涝综述:特征、机理、数据与方法[J].地理科学进展,2021,40(06):1048-1059.
[9] Ghosh S, Das A. Wetland conversion risk assessment of East Kolkata Wetland: A Ramsar site using random forest and support vector machine model[J]. Journal of cleaner production, 2020, 275: 123475.
[10] 朱科旭,管琴,白爱娟.青海省洪涝灾害时空分布和致灾雨量特征[J].沙漠与绿洲气象,2024,18(01):81-88.
[11] Kia M B, Pirasteh S, Pradhan B, et al. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia[J]. Environmental earth sciences, 2012, 67: 251-264.
[12] Lai C, Shao Q, Chen X, et al. Flood risk zoning using a rule mining based on ant colony algorithm[J]. Journal of Hydrology, 2016, 542: 268-280.
[13] Choubin B, Moradi E, Golshan M, et al. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines[J]. Science of the Total Environment, 2019, 651: 2087-2096.
[14] Wu Z, Shen Y, Wang H, et al. Urban flood disaster risk evaluation based on ontology and Bayesian Network[J]. Journal of Hydrology, 2020, 583: 124596.
[15] Chen J, Huang G, Chen W. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models[J]. Journal of environmental management, 2021, 293: 112810.
[16] 王德运,张露丹,吴祈,等.基于机器学习算法的洪涝灾害风险评估——以宜昌市为例[J].长江流域资源与环境,2023,32(08):1710-1723.
[17] Khosravi K, Panahi M, Tien Bui D. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization[J]. Hydrology and Earth System Sciences, 2018, 22(9): 4771-4792.
[18] Hermas E S, Gaber A, El Bastawesy M. Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas, Egypt[J]. The Egyptian Journal of Remote Sensing and Space Science, 2021, 24(1): 119-130.
[19] 阳驰轶,官海翔,吴玮,等.基于国产GF-3雷达影像的农田洪涝遥感监测方法[J].自然资源遥感,2023,35(04):71-80.
[20] 李加林,曹罗丹,浦瑞良.洪涝灾害遥感监测评估研究综述[J].水利学报,2014,45(03):253-260.
[21] 史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,(03):1-9.
[22] 黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,(02):21-30.
[23] 张会,李铖,程炯,等.基于“H-E-V”框架的城市洪涝风险评估研究进展[J].地理科学进展,2019,38(02):175-190.
[24] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,(05):589-595.
[25] 张林鹏,于婉,张子莺,等.基于MNDWI/LSMM/K-T变换的淮河流域面状水体提取的比较研究——以南湾水库为例[J].环境与发展,2020,32(10):142-144+146.
[26] 罗雪瑶,张文佳,柴彦威.15分钟生活圈的建成环境阈值效应研究[J].地理研究,2022,41(08):2155-2170.
[27] Zou G, Lai Z, Li Y, et al. Exploring the nonlinear impact of air pollution on housing prices: A machine learning approach[J]. Economics of Transportation, 2022, 31: 100272.
[28] 刘柯良,陈坚,祝烨,等.社区建成环境对小汽车使用行为的非线性影响模型[J].北京交通大学学报,2022,46(03):49-56.
[29] 张振国,于弘,阚志毅,等.基于Landsat 8 OLI的合肥市水域面积提取方法有效性研究[J].安徽科技学院学报,2021,35(01):58-63.
[30] 罗紫元,田健,丁锶湲,等.基于熵权TOPSIS和神经网络复合方法的厦门市雨洪灾害风险评估[J].灾害学,2022,37(04):184-192.
[31] Wu Z, Zhou Y, Wang H, et al. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse[J]. Science of The Total Environment, 2020, 716: 137077.
[32] Wang Z, Lai C, Chen X, et al. Flood hazard risk assessment model based on random forest[J]. Journal of Hydrology, 2015, 527: 1130-1141.