社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

Ruby 和 Python 分析器是如何工作的?

唤之 • 7 年前 • 811 次点击  

你好! 我作为一名编写Ruby profiler的先驱,我想对现有的Ruby和Python profiler如何工作进行一次调查。 这也有助于回答很多人的问题:“你怎么写一个profiler?”

在这篇文章中,我们只关注CPUprofiler(而不是内存/堆profiler)。 我将解释一些编写profiler的一般基本方法,给出一些代码示例,以及大量流行的Ruby和Pythonprofiler的例子,并告诉你它们是如何工作的。

在这篇文章中可能会有一些错误(为了研究这篇文章,我阅读了14个不同的分析库的代码部分),请让我们开始吧!

 

2种不同的profilers

有两种基本CPU profilers类型 – sampling profilers和tracing profilers。

tracingprofilers记录您的程序所调用的每个函数,然后在最后打印出报告。 samplingprofilers采用更加统计化的方法 – 他们每隔几毫秒记录程序的堆栈情况,然后报告结果。

使用sampling profilers而不是tracing profilers的主要原因是sampling profilers的开销较低。 如果每秒只抽取20或200个样本,那不会花费多少时间。 而且它们非常有效率 – 如果您遇到严重的性能问题(比如80%的时间花费在1个慢速函数上),那么每秒200个样本通常就足以确定那个函数的问题所在了!

分析器

下边类出了我们这篇文章要讨论的分析器(来源)。我之后将会解释表格中的术语(setitimer, rb_add_event_hook, ptrace)。这里最有趣的是,所有的分析器都是通过一小部分函数的特性实现的。

python分析器

Name Kind How it works
cProfile Tracing PyEval_SetProfile
line_profiler Tracing PyEval_SetTrace
pyflame (blog post) Sampling ptrace + custom timing
stacksampler Sampling setitimer
statprof Sampling setitimer
vmprof Sampling setitimer
pyinstrument Sampling PyEval_SetProfile
gprof (greenlet) Tracing greenlet.settrace
python-flamegraph Sampling profiling thread + custom timing
gdb hacks Sampling ptrace

“gbd hacks”并不完全是一个Python分析器:它是一个讲述如何实现用脚本包装gdb来实现hacky分析器的链接。由于新版本的gdb事实上会展开Python堆栈,所以也是和Python有关的。一种简化版的pyflame。

Ruby分析器

Name Kind How it works
stackprof by tmm1 Sampling setitimer
perftools.rb by tmm1 Sampling setitimer
rblineprof by tmm1 Tracing rb_add_event_hook
ruby-prof Tracing rb_add_event_hook
flamegraph Sampling stackprof gem

这些分析器中几乎所有的都存在你的进程里面。

在我们开始详细分析这些分析器之前,有一个非常重要的事情需要说明一下:除fyflame外所有的分析器都运行在你的Python/Ruby进程里面。如果你在一个Python/Ruby程序里面,你通常可以很容易的获取该程序的堆栈。例如下边代码中的简单的Python程序答应出每一个运行线程的堆栈:

import sys
import traceback
 
def bar():
    foo()
 
def foo():
    for _, frame in sys._current_frames().items():
        for line in traceback.extract_stack(frame):
            print line
 
bar()

你可以从下边的输出里面看到堆栈的函数名,行号,文件名等你在做分析的时候需要的所有信息。

('test2.py', 12, '<module>', 'bar()')
('test2.py', 5, 'bar', 'foo()')
('test2.py', 9, 'foo', 'for line in traceback.extract_stack(frame):')

在Ruby程序中,获取堆栈也很容易:你只需要通过caoller来获取堆栈。

这些分析器处于性能考虑都是C扩展所有它们有一点不一样,但是Ruby/Python程序的C扩展也可以很容易的获取调用堆栈。

追踪分析器是如何工作的

我调查过上边表格中所有的追踪分析器:rblineprof、ruby-prof和cProfile。它们工作原理基本相同。它们都记录所有的函数调用并且用C语言编写来降低耗时。

它们是如何工作的呢?Ruby和Python都允许指定一个回调函数,当各种解释事件(例如调用一个函数或者执行一行代码)发生的时候调用。当回调函数被调用的时候,会记录堆栈供以后分析。

我认为确切了解在代码中哪里设置这些回调函数是很有用的,所以我连接了所有在github上边的相关代码。

在Python中,可以通过PyEval_SetTrace或者 PyEval_SetProfile设置回调函数。在Python官方文档的分析和追踪里有说明。文档中说道:除了追踪函数会收到line-number事件外“PyEval_SetTrace和PyEval_SetProfile一样。

代码:

在Ruby里,你可以用rb_add_event_hook来设置回调,我找不到任何关于此处是如何调用的文档

rb_add_event_hook(prof_event_hook,
      RUBY_EVENT_CALL | RUBY_EVENT_RETURN |
      RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN |
      RUBY_EVENT_LINE, self);

prof_event_hook的类型是

static void
prof_event_hook(rb_event_flag_t event, VALUE data, VALUE self, ID mid, VALUE klass)

这看起来像极了Python的PyEval_SetTrace,但是比Python更灵活——您可以选择你关注的事件类型(就像“函数调用”一样)。

代码:

追踪分析器的缺点

追踪分析器的主要的缺点是它的实现方式是对于每个函数/行代码都执行固定的次数,这样可能使你做出错误的决定。例如,如果你有某个事物的两个实现:一个通过大量的函数调用实现,另一个没有大量函数调用,两个实现耗时相同,有大量函数调用的相比没有大量函数调用的在分析的时候会变得慢。

为了测试这一点,我做了一个包含下边内容的小文件test.py,并且比较了python -mcProfile test.py和python test.py的耗时。python test.py执行需要大约0.6秒,python -mcProfile test.py执行需要大约1秒。对于这个特定的例子cProfile引入了额外的大约60%的开销。

def recur(n):
    if n == 0:
        return
    recur(n-1)
 
for i in range(5000):
    recur(700)

cProfile文档中说:

Python的解释语言的特性往往会增加执行的开销,对于典型的应用确定性分析仅仅会增加很少运行开销。

这似乎是一个合理的说法:上边的示例(执行350万次函数调用)显然不是个典型的Python程序,并且几乎任何其他程序开销都比该示例小。

我没有测试ruby-prof(一个ruby追踪分析器)的开销,但是它的README说:

大多数程序开分析器耗时将会是原来的两倍,并且高度递归程序(斐波那契数列)耗时将会是原来的三倍。

采样分析器都怎么工作的:setitimer

现在讨论第二种分析器:采样分析器。

大多数Ruby和Python的采样分析器都是通过系统调用setitimer实现的。这是怎么回事呢?

好吧,比方说你想要每秒获取一个程序的堆栈50次,一种方法是:

  • 请求Linux内核每20毫秒给你发送一个信号(使用系统调用setitimer)
  • 注册一个信号处理器在每次获得信号的时候记录堆栈。
  • 当结束分析的时候,请求Linux停止发送信号并且打印输出。

如果你想要看一个实际的用setitimer实现采样分析器的例子的话,我认为stacksampler.py是一个最好的例子,stacksampler.py是一个有用的有效的分析器并且代码只有大约100行,好酷啊!

stacksampler.py只有100多行的一个原因是:当你把一个Python函数注册成信号处理器的时候,该函数被传送到你的Python程序的当前堆栈中。所以stacksampler.py信号处理器注册是非常简单的:

def _sample(self, signum, frame):
   stack = []
   while frame is not None:
       stack.append(self._format_frame(frame))
       frame = frame.f_back
 
   stack = ';'.join(reversed(stack))
   self._stack_counts[stack] += 1

它只是将堆栈从堆栈帧中取出来并且增加堆栈查看计数,非常简单!非常酷!

我们看继续剩下的使用setitimer的分析器并找到它们调用settimer的代码:

关于setitimer很重要的一点是,你需要决定如何计算时间。你想要真正的20 ms的“挂钟”时间?你想要20 ms的用户CPU时间?或者20 ms的用户+系统CPU时间?如果你仔细看电话网站上的内容,你就会发现,这些分析器实际上对setitimer做出了不同的选择 — 有时候它是可配置的,有时候却不可。setitimer手册页十分精悍,并且值得去读懂上面所有的观点。

@mgedmin 在推特上指出了一个使用setitimer时出现的有趣的问题,这个问题和这个问题拥有的一系列更多细节。

    一个有趣的基于setitimer分析器的问题就是定时器产生的信号!信号有时候能中断系统调用!系统调用有时候需要几毫秒!如果测试太平凡,你会让你的程序永远循环执行系统调用!

不使用setitimer的采样分析器

有些采样分析器不使用setitimer:

  • pyinstrument使用PyEval_SetProfile(所以它在某种程度上是跟踪分析器),但是当它的跟踪回调函数被调用时,它并不总是收集堆栈样本。下面是选择何时测试堆栈跟踪的代码。更多信息,请看这篇博客文章。 (真相: setitimer带你了解Python中的主线程)
  • pyflame简要介绍了Python代码在外部调用ptracesystem的过程。根本上来讲,它只是一个抓取样本,睡眠,重复的循环,这里是sleep调用。
  • python-flamegraph以类似的方式在你的Python操作中开启一个新的线程并且抓取堆栈跟踪,睡眠,和重复。这里是sleep调用。

所有这3个分析器使用挂钟定时采样。

 

pyflame 博客

有很多关于pyflame是如何工作的。我不打算在这里进行介绍,但是Evan Klitke写了很多关于它的非常好的博客:

还有很多在 eklitzke.org/。所有有趣的东西,我会更详细地阅读——也许ptrace是比实现一个Ruby分析器process_vm_readv更好的方法!(process_vm_readv开销低,因为它不会阻断进程,但它也可以给你一个不一致的快照,因为它不会阻断进程:))

 

先讲解到这里了!

在这篇文章中我没有涉及很多重要的细节 – 比如我基本上说vmprof和stacksampler是一样的(但实际上它们不是 – vmprof支持线性分析和用C语言编写的Python函数分析,我相信这在分析器中引入了更多的复杂性)。 但一些基本原理是一样的,所以我认为这项调查是一个很好的起点。

1 收藏 评论
今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/K4knnxho78
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/4816
 
811 次点击