社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Elasticsearch

elasticsearch 优化写入速度 | easyice

赵安家 • 7 年前 • 790 次点击  
目录 目录 [隐藏]

基于版本: 2.x – 5.x

在 es 的默认设置,是综合考虑数据可靠性,搜索实时性,写入速度等因素的,当你离开默认设置,追求极致的写入速度时,很多是以牺牲可靠性和搜索实时性为代价的.有时候,业务上对两者要求并不高,反而对写入速度要求很高,例如在我的场景中,要求每秒200w 条的平均写入速度,每条500字节左右

接下来的优化基于集群正常运行的前提下,如果是集群首次灌入数据,可以将副本数设置为0,写入完毕再调整回去,这样副本分片只需要拷贝,节省了索引过程.

综合来说,提升写入速度从以下几方面入手:

  • 加大 translog flush ,目的是降低 iops,writeblock
  • 加大 index refresh间隔, 目的除了降低 io, 更重要的降低了 segment merge 频率
  • 调整 bulk 线程池和队列
  • 优化磁盘间的任务均匀情况,将 shard 尽量均匀分布到物理主机的各磁盘
  • 优化节点间的任务分布,将任务尽量均匀的发到各节点
  • 优化 lucene 层建立索引的过程,目的是降低 CPU 占用率及 IO

translog flush 间隔调整


从 es 2.x 开始, 默认设置下,translog 的持久化策略为:每个请求都flush.对应配置项为:

 
index.translog.durability: request
 

这是影响 es 写入速度的最大因素.但是只有这样,写操作才有可能是可靠的,原因参考写入流程.
如果系统可以接受一定几率的数据丢失,调整 translog 持久化策略为周期性和一定大小的时候 flush:

 
index.translog.durability: async
index.translog.sync_interval: 120s
index.translog.flush_threshold_size: 1024mb
index.translog.flush_threshold_period: 120m
 

索引刷新间隔调整: refresh_interval


refresh_interval

默认情况下索引的refresh_interval为1秒,这意味着数据写1秒后就可以被搜索到,每次索引的 refresh 会产生一个新的 lucene 段,这会导致频繁的 segment merge 行为,如果你不需要这么高的搜索实时性,应该降低索引refresh 周期,如:

 
index.refresh_interval: 120s
 

segment merge

segment merge 操作对系统 CPU 和 IO 占用都比较高,从es 2.0开始,merge 行为不再由 es 控制,而是转由 lucene 控制,因此以下配置已被删除:

 
indices.store.throttle.type
indices.store.throttle.max_bytes_per_sec
index.store.throttle.type
index.store.throttle.max_bytes_per_sec
 

改为以下调整开关:

 
index.merge.scheduler.max_thread_count
index.merge.policy.*
 

最大线程数的默认值为:

 
Math.max(1, Math.min(4, Runtime.getRuntime().availableProcessors() / 2))
 

是一个比较理想的值,如果你只有一块硬盘并且非 SSD, 应该把他设置为1,因为在旋转存储介质上并发写,由于寻址的原因,不会提升,只会降低写入速度.

merge 策略有三种:

  • tiered
  • log_byete_size
  • log_doc

默认情况下:

 
index.merge.polcy.type: tiered
 

索引创建时合并策略就已确定,不能更改,但是可以动态更新策略参数,一般情况下,不需要调整.如果堆栈经常有很多 merge, 可以尝试调整以下配置:

 
index.merge.policy.floor_segment
 

该属性用于阻止segment 的频繁flush, 小于此值将考虑优先合并,默认为2M,可考虑适当降低此值

 
index.merge.policy.segments_per_tier
 

该属性指定了每层分段的数量,取值约小最终segment 越少,因此需要 merge 的操作更多,可以考虑适当增加此值.默认为10,他应该大于等于 index.merge.policy.max_merge_at_once

 
index.merge.policy.max_merged_segment
 

指定了单个 segment 的最大容量,默认为5GB,可以考虑适当降低此值

Indexing Buffer

indexing buffer在为 doc 建立索引时使用,当缓冲满时会刷入磁盘,生成一个新的 segment, 这是除refresh_interval外另外一个刷新索引,生成新 segment 的机会. 每个 shard 有自己的 indexing buffer,下面的关于这个 buffer 大小的配置需要除以这个节点上所有的 shard 数量

 
indices.memory.index_buffer_size
 

默认为整个堆空间的10%

 
indices.memory.min_index_buffer_size
 

默认48mb

 
indices.memory.max_index_buffer_size
 

默认无限制

在大量的索引操作时,indices.memory.index_buffer_size默认设置可能不够,这和可用堆内存,单节点上的 shard 数量相关,可以考虑适当增大.

bulk 线程池和队列大小

建立索引的过程偏计算密集型任务,应该使用固定大小的线程池配置,来不及处理的放入队列,线程数量配置为 CPU 核心数+1,避免过多的上下文切换.队列大小可以适当增加.

磁盘间的任务均衡


如果你的部署方案是为path.data 配置多个路径来使用多块磁盘, es 在分配 shard 时,落到各磁盘上的 shard 可能并不均匀,这种不均匀可能会导致某些磁盘繁忙,利用率达到100%,这种不均匀达到一定程度可能会对写入性能产生负面影响.

es 在处理多路径时,优先将 shard 分配到可用空间百分比最多的磁盘,因此短时间内创建的 shard 可能被集中分配到这个磁盘,即使可用空间是99%和98%的差别.后来 es 在2.x 版本中开始解决这个问题的方式是:预估一下这个 shard 会使用的空间,从磁盘可用空间中减去这部分,直到现在6.x beta 版也是这种处理方式.但是实现也存在一些问题:

从可用空间减去预估大小

这种机制只存在于一次索引创建的过程中,下一次的索引创建,磁盘可用空间并不是上次做完减法以后的结果,这也可以理解,毕竟预估是不准的,一直减下去很快就减没了.

但是最终的效果是,这种机制并没有从根本上解决问题,即使没有完美的解决方案,这种机制的效果也不够好.

如果单一的机制不能解决所有的场景,至少应该为不同场景准备多种选择.

为此,我们为 es 增加了两种策略
简单轮询:系统初始阶段,简单轮询的效果是最均匀的
基于可用空间的动态加权轮询:以可用空间作为权重,在磁盘之间加权轮询

节点间的任务均衡


为了在节点间任务尽量均衡,数据写入客户端应该把 bulk 请求轮询发送到各个节点.

当使用 java api ,或者 rest api 的 bulk 接口发送数据时,客户端将会轮询的发送的集群节点,节点列表取决于:
client.transport.sniff为 true,(默认为 false),列表为所有数据节点
否则,列表为初始化客户端对象时添加进去的节点.

java api 的 TransportClient 和 rest api 的 RestClient 都是线程安全的,当写入程序自己创建线程池控制并发,应该使用同一个 Client 对象.在此建议使用 rest api,兼容性好,只有吞吐量非常大才值得考虑序列化的开销,显然搜索并不是高吞吐量的业务.

观察bulk 请求在不同节点上的处理情况,通过cat 接口观察 bulk 线程池和队列情况,是否存在不均:

 
_cat/thread_pool
 

索引过程调整和优化


自动生成 doc ID

分析 es 写入流程可以看到,写入 doc 时如果是外部指定了 id,es 会先尝试读取原来doc的版本号, 判断是否需要更新,使用自动生成 doc id 可以避免这个环节.

调整字段 Mappings

字段的 index 属性设置为: not_analyzed,或者 no

对字段不分词,或者不索引,可以节省很多运算,降低 CPU 占用.尤其是 binary 类型,默认情况下占用 CPU 非常高,而这种类型根本不需要进行分词做索引.

单个 doc 在建立索引时的运算复杂度,最大的因素 不在于 doc 的字节数或者说某个字段 value 的长度,而是字段的数量. 例如在满负载的写入压力测试中,mapping 相同的情况下,一个有10个字段,200字节的 doc, 通过增加某些字段 value 的长度到500字节,写入 es 时速度下降很少,而如果字段数增加到20,即使整个 doc 字节数没增加多少,写入速度也会降低一倍.

使用不同的分析器:analyzer

不同的分析器在索引过程中运算复杂度也有较大的差异

调整_source 字段

_source 字段用于存储 doc 原始数据,对于部分不需要存储的字段,可以通过 includes excludes 来过滤,或者将 _source 禁用,一般用于索引和数据分离

这样可以降低 io 的压力,不过实际场景大多数情况不会禁用 _source ,而即使过滤掉某些字段,对于写入速度的提示效果也不大,满负荷写入情况下,基本是CPU 先跑满了,瓶颈在于 CPU.

禁用 _all 字段

_all 字段默认是开启的,其中包含所有字段分词后的关键词,作用是可以在搜索的时候不指定特定字段,从所有字段中检索.如果你不需要这个特性,可以禁用 _all,可以小幅的降低CPU 压力,对速度影响并不明显.

对于 Analyzed 的字段禁用 Norms

Norms 用于在搜索时计算 doc 的评分,如果不需要评分,可以禁用他:

 
"title": {"type": "string","norms": {"enabled": false}}
 

index_options 设置

index_options 用于控制在建立倒排索引过程中,哪些内容会被添加到倒排,例如 doc数量,词频,positions,offsets等信息,优化这些设置可以一定程度降低索引过程中运算任务,节省 CPU 占用率

不过实际场景中,通常很难确定业务将来会不会用到这些信息,除非一开始方案就明确这样设计的

方法比结论重要


当面对一个系统性问题的时候,往往是多种因素造成的,在处理集群的写入性能问题上,先将问题分解,在单台上分析调整最高能力到某种系统资源达到极限,其中观察利用率,io block,线程切换,堆栈状态等,解决局部问题,在此基础上解决整体问题会容易很多

最后


jvm 参数除了 Xmx,Xms 其他尽量使用默认,一些看起来比较合理的参数实际效果可能适得其反。

共享下我的配置:

template-base
elasticsearch

参考链接


https://doc.yonyoucloud.com/doc/mastering-elasticsearch/chapter-3/36_README.html
https://qbox.io/blog/maximize-guide-elasticsearch-indexing-performance-part-1
https://qbox.io/blog/maximize-guide-elasticsearch-indexing-performance-part-2
https://qbox.io/blog/maximize-guide-elasticsearch-indexing-performance-part-3

相关文章:

  1. elasticsearch 一次长时间 FGC 问题分析
  2. elasticsearch 写流程
  3. elasticsearch 机制和架构

(转载请注明作者和出处 easyice.cn ,请勿用于任何商业用途)


今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/dNV8vn5PSQ
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/9043
 
790 次点击