社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Sash Sinha  »  全部回复
回复总数  2
3 年前
回复了 Sash Sinha 创建的主题 » Python将列表中的元素以偶发模式提取到元组中

也许你可以使用while循环:

from typing import Optional, NamedTuple


class Element(NamedTuple):
    value: float
    name: str
    profession: Optional[str] = None


def main() -> None:
    arr = [
        1150.1, 'James',
        3323.1, 'Steve',
        9323.1, 'John',
        1233.1, 'Gary', 'criminal',
        3293.1, 'Josh',
        9232.1, 'Daniel', 'criminal',
    ]
    parsed_elements = []
    i = 0
    while i <= len(arr) - 2:
        if isinstance(arr[i + 2], str):
            parsed_elements.append(Element(*arr[i:i + 3]))
            i += 3
        else:
            parsed_elements.append(Element(*arr[i:i + 2]))
            i += 2
    print('\n'.join(str(e) for e in parsed_elements))


if __name__ == '__main__':
    main()

输出:

Element(value=1150.1, name='James', profession=None)
Element(value=3323.1, name='Steve', profession=None)
Element(value=9323.1, name='John', profession=None)
Element(value=1233.1, name='Gary', profession='criminal')
Element(value=3293.1, name='Josh', profession=None)
Element(value=9232.1, name='Daniel', profession='criminal')
3 年前
回复了 Sash Sinha 创建的主题 » 如何删除df列python中最后一个句点之后的字符?

你可以用 pd.DataFrame. apply 以及一个lambda函数,该函数在拆分后返回最长的元素(基于中的注释) richardec's answer ):

In [1]: import pandas as pd
In [2]: d = {
   ...:     'domains': [
   ...:         'common_name',
   ...:         'www.amazon.com',
   ...:         'amazon.com',
   ...:         'subexample.amazon.com',
   ...:         'walmart.en',
   ...:         'walmart.uk',
   ...:         'michigan.edu',
   ...:         'tkoutletstore.co.uk',
   ...:         'tillyandotto.com.au',
   ...:     ]
   ...: }
   ...: df = pd.DataFrame(data=d)
   ...: df
Out[2]: 
                 domains
0            common_name
1         www.amazon.com
2             amazon.com
3  subexample.amazon.com
4             walmart.en
5             walmart.uk
6           michigan.edu
7    tkoutletstore.co.uk
8    tillyandotto.com.au
In [3]: df['extracted'] = df['domains'].apply(lambda d: max(d.split('.'), key=len))

In [4]: df
Out[4]: 
                 domains      extracted
0            common_name    common_name
1         www.amazon.com         amazon
2             amazon.com         amazon
3  subexample.amazon.com     subexample
4             walmart.en        walmart
5             walmart.uk        walmart
6           michigan.edu       michigan
7    tkoutletstore.co.uk  tkoutletstore
8    tillyandotto.com.au   tillyandotto