社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

华中科技大学李松课题组,利用机器学习预测多孔材料水吸附等温线

CDA数据分析师 • 1 年前 • 442 次点击  

By 超神经

多孔材料的水吸附等温线是一个非常重要的参数,但这一参数的获得并不容易。这是因为多孔材料种类过多、结构多元,通过实验和计算的方式获得水吸附等温线数据成本过高,耗时过长。

华中科技大学的李松课题组,建立了一个两步机器学习模型,训练 AI 通过材料的结构参数预测水吸附等温线参数和后续应用性能。
作者|加零
编辑|雪菜、李慧、三羊


在水净化、水脱盐、水收集和吸附热转换等过程中,多孔材料有着巨大的应用。这些吸附驱动应用中,诸如表面亲水性、解吸滞后性和吸水性等结构特性,都可能影响多孔材料的性能。这些结构特性都可以从水吸附等温线 (water adsorption isotherms) 中获得。

那么,如何获得材料的水吸附等温线呢?

如果以实验的方式,获得几种吸附剂的水吸附等温线并不困难,但多孔材料种类众多,如剑桥结构数据库中已录入 10 万余种多孔材料数据,对它们一一合成和测试显然是不合理的。

如果以计算的方式,通过吸附剂晶体结构分子模拟可以得到水吸附等温线,但计算成本极高,难以大规模预测。

而机器学习能够归纳处理大批量的数据,并从中提取规律,且在材料性质预测中有一定的应用案例。基于此,来自华中科技大学的李松课题组建立机器学习模型,训练 AI 提取多孔材料结构参数以预测水吸附等温线,并在此基础上进一步估算各种吸附剂的冷却性能和后续应用。

成果已发表在「Journal of Materials Chemistry A」期刊上。

成果发表在「Journal of Materials Chemistry A」期刊

论文链接:
https://pubs.rsc.org/en/content/articlelanding/2023/TA/D3TA03586G

后台回复「水吸附」获取完整论文 PDF

实验过程

数据集

EWAID 数据库


研究者从 3.0 版的水吸附等温线数据库 EWAID 中选择了 460 种纳米多孔吸附剂,包括金属-有机骨架 (MOFs)、共价有机骨架 (COFs) 和具有确定晶体结构的沸石 (zeolites) ,通过文献调研获取其水吸附等温线数据。

EWAID:experimental water adsorption isotherm database

在选取的 460 种吸附剂中有 148 种具有所有的结构特征,相关结构参数为可达表面积 (Sa) 、有效孔容 (Va) 和孔径 (Dp) 。

采用通用吸附等温线模型 (UAIM, universal adsorption isotherm model) 拟合 148 种吸附剂的水吸附等温线,得到材料在不同压力 (P) 下 298K 的吸水量 (W)。

将吸附剂的结构特征和吸附性能数据 (Sa、Va、Dp、 P 和 W) 输入机器学习模型进行训练。

从 EWAID 中选择的吸附剂

模型架构

两步 ML 策略


研究者们开发了两步 ML 策略:

从数据库中提取多孔材料的结构参数 (Sa、Va、 Dp) 和吸附压力 P 作为参数,输入 ML: S-I 模型,利用机器学习对水吸附等温线进行预测。

估计出水吸附等温线后,提取 3 个参数:饱和吸附容量 (Wsat),等温线的阶跃位置 (α) 和亨利常数 (KH) ,输入 ML: I-P 模型。计算吸附式制冷系统的性能系数 (COPC, the coefficient of performance for cooling) 和吸附剂/水工质对的比制冷效果 (SCE, specific cooling effects),评价其吸附冷却性能。

两步机器学习策略示意图

算法训练

RF 和 ANN 综合应用


采用 Scikit-learn 模块开发机器学习模型,采用 RF(随机森林) 和 ANN 两种算法进行两步机器学习训练。

数据集 80% 的样本被随机选取作为训练集,其余 20% 作为测试集。

训练过程中,为了确定算法的最优超参数 (hyper-parameters) ,采用五重交叉验证的方法测试不同超参数组建立的模型,根据测定系数 R确定最优超参数。

从结构到等温线:S-I 流程

性能验证

数据库内等温线预测


RF 准确性优于 ANN

根据 148 种训练吸附剂的结构特征和吸附性能数据  (Sa、 Va、 Dp、 P 和 W),采用 ML 模型对水吸附等温线进行预测。由下表可知, RF 模型在预测水吸附等温线方面具有较高的准确性。

RF 和 ANN 预测精度

由下图 a 可见,这些吸附剂的吸水量分布在 0 ~ 2.0 g/g 之间,大部分在 0 ~ 0.8 g/g 之间。

由下图 b 的相对重要性分析可见,吸附压力 (P) 对吸水量影响最大,二者成正相关。在固定压力下,吸附剂的结构特征,特别是表面积和孔隙体积决定吸水量多少。

RF 模型对吸水性的相关预测

RF 模型预测的精度更高

将数据库中具有不同结构特性的几种典型吸附剂作为实验对象,对比 EWAID 实验数据和 RF 模型预测的水吸附等温线。

数据库中主要有 4 种水吸附等温线类型,I 型(图 a、c 所示的倒 L 形),V 型(图 d、f 所示的典型 S 形),IV 型和 VI 型(图 g、i 所示的两个或多个吸附步骤的形状)。

由下图可见,无论等温线的类型和吸附材料的结构性质如何,吸附等温线预测值与实验值均具有较高的一致性,这验证了 RF 模型的高精度。

水吸附等温线预测结果
灰色表示 EWAID 实验数据,蓝色表示 RF 模型预测数据

RF 可识别微小结构差异,灵敏度更高

改变 MOF 族吸附剂的金属 (MOF-74-M 和 CUK-1-M,M = Co,Mg,Ni) 和功能基 (MIL-101-Cr + X,X = NH2,SO3H,NO2) 研究结构差异导致的水吸附等温线变化。

改性后结构参数见下表:

吸附剂的结构特征

对应的水等温线预测结果见下图:
水等温线预测结果
菱形表示 EWAID 实验数据,圆点表示 RF 预测结果

针对结构差异微小的吸附剂,RF 模型准确地预测了水吸附等温线的差异,展现了高精度和高灵敏度。

性能拓展

数据库外等温线预测


为了进一步验证 RF 模型的适应性,研究者们选择 EWAID 数据库中不包含的吸附剂 (ZJU-210-Al,NU-405-Zr和 iso-NU-1000-Zr ) 进行测试,结果如下图。

水等温线预测结果
灰色表示实验数据,蓝色表示 RF 模型预测数据

由图 a、b 可见,RF 模型对 ZJU-210-Al 和 NU-405-Zr 的水吸附等温线有较好的预测。在图 c 中,RF 模型对 ISO-NU-1000-Zr 的高压吸水量预测值低于实验值。

这一预测偏差的产生,可能是因为 EWAID 数据库中没有足够数量的高吸附量样本(吸水量 > 0.8 g/g),也可能是对 ISO-NU-1000-Zr 的结构描述不充分。

对具有微小结构差异的吸附剂开展研究,结果如下图:

水等温线预测结果
菱形表示 EWAID 实验数据,圆点表示 RF 预测结果

UiO-67-Zr 与 UiO-66-Zr 相比,配体的附加苯环有疏水性,在图 d 中,UiO-67-Zr 的水吸附等温线向高压方向移动。

MOF-303-Al 与 CAU-23-Al 相比有更高的亲水性,在图 e 中,MOF-303-Al 表现了更小的阶跃位置,水吸附等温线向低压方向移动。

按表面亲水性 UiO-66-Zr + (OH)> UiO-66-Zr + NH2 > UiO-66-Zr + CH3 的顺序进行 RF 模型预测。在图 f 中,UiO-66-Zr + NH和 UiO-66-Zr + CH3 等温线阶跃位置的预测值大于实验值,向高压方向移动,说明 RF 模型高估了它们的疏水性。

这一偏差的产生,可能是因为在 RF 模型中对吸附剂表面特性的描述符不够丰富,不能有效区分同族但具有不同表面亲水性的吸附剂。

综上,RF 模型对数据库外的多孔材料水吸附等温线预测精度较高,且一定程度上可以分辨材料的结构差异。但相比数据库内的材料预测,会产生一些偏差。可通过补充训练数据,丰富结构特性描述符等方式修正这些偏差。

从等温线到性能:I-P 流程

参数提取

COP和 SCE


以 ML 模型预测的水吸附等温线为基础,提取三个描述符:饱和吸附容量 (Wsat) ,等温线的阶跃位置 (α) 和亨利常数 (KH),对吸附式制冷 (ACs, adsorption chillers) 的性能进行分析。

吸附等温线特征示意图

吸附式制冷性能可根据性能系数 (COPC,the coefficient of performance for cooling) 和吸附剂/水工质对 (adsorbent/water working pairs) 的比制冷效果 (SCE,specific cooling effects) 这两个参数进行评估。

使用描述符 (Wsat,α,KH) ,ML 模型可以快速获得  COP和 SCE,而不需要复杂的计算过程。

性能预测

等温线参数与性能的关系


根据 460 个吸附剂/水工质对的吸附等温线特征 (Wsat,α,KH),采用 ML 模型对 SCE 和 COPC 进行预测。由下表可知,RF 模型在预测 SCE 和 COP方面均具有较高的精度。

RF 和 ANN 预测精度

由下图 a 和 b 可见,绝大多数工质对的 SCE 和 COPC 分别位于 0.400 kJ/kg 和 0.4-0.8 的范围内。

由下图 c 和 d 的相对重要性分析可见,Wsat 在确定 SCE 中占 46% 的重要性,KH 在确定 COP中占 58% 的重要性,这意味着 Wsat 和 SCE、KH 和 COP之间存在很强的相关性

RF 对 SCE 和  的预测值及相关性分析

从下图可以得知,当三个参数的范围为:Wsat = 0.2-0.8 g/g,α = 0.1-0.3,KH = 10-4 - 10-1 (mol/kg·Pa) 时,冷却性能可维持在 (SCE > 200kJ kg-1,COPC  > 0.7) 这一范围内,此时水吸附等温线为 V 型。

148种吸附剂的 Wsat、α、KH 和冷却性能之间的关系

材料科研新范式离不开机器学习

材料科学的指导思想可以总结为四种范式:
  • 经验的试错方法;
  • 物理和化学规律;
  • 计算机模拟;
  • 大数据驱动的科学。

20 世纪 90 年代,Rao 等人在研究陶瓷基复合材料 (CMC) 时,运用 ANN 进行模拟,这是机器学习在材料科学中的开创性应用。

随着科技的发展,第四种范式融合了其他三种范式的优势,近年来,机器学习在材料科学领域可谓是火热,材料的发现、制备和性能分析验证等方向都有它的身影。

机器学习在材料科学中的应用

但是,想让机器学习直接赋能于材料实际应用,研究者们仍然任重道远。

机器学习为我们提供了「结构—性能」的视角,期待研究者们与 AI 协作,真正实现识结构、知性能、促创新,共同探索材料科学新的未来。


了解更多数据分析知识、与更多优秀的人一起进群交流请扫码


群码过期或者群满请添加客服微信 CDAshujufenxi 后拉您进群
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/164857
 
442 次点击