社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  chatgpt

ChatGPT参数规模被扒:只有7B

顶尖架构师栈 • 1 年前 • 259 次点击  
作者:梦晨 
转自:量子位 | 公众号 QbitAI

ChatGPT惨遭攻击,参数规模终于被扒出来了——

很可能只有7B(70亿)

消息来自南加州大学最新研究,他们使用一种攻击方法,花费不到1000美元就把最新版gpt-3.5-turbo模型的机密给挖了出来。

果然,OpenAI不Open,自有别人帮他们Open。

具体来说,南加大团队三位作者破解出了未公布的gpt-3.5-turbo嵌入向量维度(embedding size)为4096或4608。

而几乎所有已知的开源大模型如Llama和Mistral,嵌入向量维度4096的时候都是约7B参数规模。

其它比例的话,就会造成网络过宽或过窄,已被证明对模型性能不利。

因此南加大团队指出,可以推测gpt-3.5-turbo的参数规模也在7B左右,除非是MoE架构可能不同。

数月前,曾有微软CODEFUSION论文意外泄露当时GPT-3.5模型参数为20B,在后续论文版本中又删除了这一信息。

当时引起了一阵轩然大波,业界很多人分析并非不可能,先训练一个真正的千亿参数大模型,再通过种种手段压缩、蒸馏出小模型,并保留大模型的能力。

而现在的7B,不知道是从一开始20B的消息就不准确,还是后来又再次压缩了。

但无论是哪一种,都证明OpenAI有很恐怖的模型优化能力。

撬开ChatGPT的保护壳

那么,南加大团队是怎么扒出ChatGPT未公开配置的呢?

还要说到现代语言模型中普遍存在的“Softmax瓶颈”。

当Transformer网络处理完输入,会得到一个低维的特征向量,也就是Embedding。这个特征向量再经过Softmax变换,就得到了最后的概率分布输出。

问题就出在Softmax这里,因为矩阵的秩受限于特征向量的维度,所以大模型的输出空间事实上被限制在了一个低维的线性子空间里。

这就像是无论你的衣柜里有多少件衣服,最后能穿出去的搭配,其实是有限的。这个”衣柜”的大小,就取决于你的“特征向量维度”有多大。

南加大团队抓住了这一点,他们发现,只要从API调用中获取到足够多的输出样本,就足以拼凑出这个大模型的特征向量维度。

有了这个特征向量维度,可以进一步推断大模型的参数规模还原出完整的概率输出在API悄悄更新时也能发现变化,甚至根据单个输出判断来自哪个大模型

更狠的是,推测特征向量维度并不需要太多的样本。

以OpenAI的gpt-3.5-turbo为例,采集到4000多个样本就绰绰有余了,花费还不到1000美元。

在论文的最后,团队还探讨了目前的几个应对这种攻击的方法,认为这些方法要么消除了大模型的实用性,要么实施起来成本高昂。

不过他们倒也不认为这种攻击不能有效防护是个坏事,

一方面无法用此方法完整窃取模型参数,破坏性有限。

另一方面允许大模型API用户自己检测模型何时发生变更,有助于大模型供应商和客户之间建立信任,并促使大模型公司提供更高的透明度。

这是一个feature,不是一个bug。

论文:

https://arxiv.org/abs/2403.09539

参考链接:

https://x.com/TheXeophon/status/1768659520627097648

—  —

最后

前阵子IDE 来了一波大的更新,推出了 2023.3 正式版,做了不少优化,最重要的是大家期待已久的 AI Assistant 插件本次更新也正式推出,助力大家提高 Coding 效率。但是很遗憾,目前我们无法使用,因为该插件底层主要基于 OpenAi,大陆现在是未开放地区,未提供服务,但是经过一番折腾(白嫖不行)还是可以使用上的。

目前AI Assistant需要对账号授权激活。需要激活的小伙伴可以扫描下方二维码(备注:购买),抢先激活!,想白嫖的不要来,暂时不支持免费哦!机会稍纵即逝,错过不再有!

让AI Assistant为你的编程赋能,将你从乏味的工作中解放出来,前所未有地专注于重要事项。

后续我会继续详细分享更多实用的工具和功能。大家可以把微信公众号,设置为

星标,这样就不会错过之后的精彩内容啦!

如果这篇文章对你有帮助的话,别忘了【在看】【点赞】支持下哦~

IT一线从业者抱团群

致力于帮助广大开发者提供高效合适的工具,让大家能够腾出手做更多创造性的工作,也欢迎大家分享自己公司的内推信息,相互帮助,一起进步!

组建了程序员,架构师,IT从业者交流群,以交流技术职位内推行业探讨为主

加大佬好友,备注"加群"

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/168227