from collections import namedtupleimport warningsimport torchfrom torch import nn, Tensorimport torch.nn.functional as Ffrom typing import Callable, Any, Optional, Tuple, List
InceptionOutputs = namedtuple('InceptionOutputs', ['logits', 'aux_logits'])InceptionOutputs.__annotations__ = {'logits': Tensor, 'aux_logits': [Tensor]}
_InceptionOutputs = InceptionOutputs
class Inception3(nn.Module):
def __init__( self, num_classes: int = 1000, aux_logits: bool = False, transform_input: bool = False, inception_blocks = None, init_weights = None) -> None: super(Inception3, self).__init__() if inception_blocks is None: inception_blocks = [ BasicConv2d, InceptionA, InceptionB, InceptionC, InceptionD, InceptionE, InceptionAux ] assert len(inception_blocks) == 7 conv_block = inception_blocks[0] inception_a = inception_blocks[1] inception_b = inception_blocks[2] inception_c = inception_blocks[3] inception_d = inception_blocks[4] inception_e = inception_blocks[5] inception_aux = inception_blocks[6]
self.aux_logits = aux_logits self.transform_input = transform_input self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2) self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2) self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2) self.Mixed_5b = inception_a(192, pool_features=32)
self.Mixed_5c = inception_a(256, pool_features=64) self.Mixed_5d = inception_a(288, pool_features=64) self.Mixed_6a = inception_b(288) self.Mixed_6b = inception_c(768, channels_7x7=128) self.Mixed_6c = inception_c(768, channels_7x7=160) self.Mixed_6d = inception_c(768, channels_7x7=160) self.Mixed_6e = inception_c(768, channels_7x7=192) self.AuxLogits = None if aux_logits: self.AuxLogits = inception_aux(768, num_classes) self.Mixed_7a = inception_d(768) self.Mixed_7b = inception_e(1280) self.Mixed_7c = inception_e(2048) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout() self.fc = nn.Linear(2048, num_classes)
def _transform_input(self, x: Tensor) -> Tensor: if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) return x
def _forward(self, x: Tensor): x = self.Conv2d_1a_3x3(x) x = self.Conv2d_2a_3x3(x) x = self.Conv2d_2b_3x3(x) x = self.maxpool1(x) x = self.Conv2d_3b_1x1(x) x = self.Conv2d_4a_3x3(x) x = self.maxpool2(x)
x = self.Mixed_5b(x) x = self.Mixed_5c(x) x = self.Mixed_5d(x) x = self.Mixed_6a(x) x = self.Mixed_6b(x) x = self.Mixed_6c(x) x = self.Mixed_6d(x) x = self.Mixed_6e(x) aux = None if self.AuxLogits is not None: if self.training: aux = self.AuxLogits(x) x = self.Mixed_7a(x) x = self.Mixed_7b(x) x = self.Mixed_7c(x) x = self.avgpool(x) x = self.dropout(x) x = torch.flatten(x, 1) x = self.fc(x) return x, aux
def eager_outputs(self, x: Tensor, aux: Optional[Tensor]) -> InceptionOutputs: if self.training and self.aux_logits: return InceptionOutputs(x, aux) else: return x
def forward(self, x: Tensor) -> InceptionOutputs: x = self._transform_input(x) x, aux = self._forward(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted Inception3 always returns Inception3 Tuple")
return InceptionOutputs(x, aux) else: return self.eager_outputs(x, aux)
class InceptionA(nn.Module):
def __init__( self, in_channels: int, pool_features: int, conv_block = None) -> None: super(InceptionA, self).__init__() if conv_block is None: conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return outputs
def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1)
class InceptionB(nn.Module):
def __init__( self, in_channels: int, conv_block = None) -> None: super(InceptionB, self).__init__() if conv_block is None: conv_block = BasicConv2d self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
def _forward(self, x: Tensor) -> List[Tensor]: branch3x3 = self.branch3x3(x)
branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
outputs = [branch3x3, branch3x3dbl, branch_pool] return outputs
def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1)
class InceptionC(nn.Module):
def __init__( self, in_channels: int, channels_7x7: int, conv_block = None) -> None: super(InceptionC, self).__init__() if conv_block is None: conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
c7 = channels_7x7 self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0
, 3)) self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return outputs
def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1)
class InceptionD(nn.Module):
def __init__( self, in_channels: int, conv_block = None) -> None: super(InceptionD, self).__init__() if conv_block is None: conv_block = BasicConv2d self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) self.branch3x3_2 = conv_block(192
, 320, kernel_size=3, stride=2)
self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
def _forward(self, x: Tensor) -> List[Tensor]: branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3)
branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch7x7x3, branch_pool] return outputs
def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1)
class InceptionE(nn.Module):
def __init__( self, in_channels: int, conv_block = None) -> None: super(InceptionE, self).__init__() if conv_block is None: conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
self.branch3x3dbl_1 = conv_block(in_channels,
448, kernel_size=1) self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return outputs
def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1)
class InceptionAux(nn.Module):
def __init__( self, in_channels: int, num_classes: int, conv_block = None) -> None: super(InceptionAux, self).__init__() if conv_block is None: conv_block = BasicConv2d self.conv0 = conv_block(in_channels, 128, kernel_size=1) self.conv1 = conv_block(128, 768, kernel_size=5)
self.conv1.stddev = 0.01 self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001
def forward(self, x: Tensor) -> Tensor: x = F.avg_pool2d(x, kernel_size=5, stride=3) x = self.conv0(x) x = self.conv1(x) x = F.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) x = self.fc(x) return x
class BasicConv2d(nn.Module):
def __init__( self, in_channels: int, out_channels: int, **kwargs) -> None: super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True)
inception3 = Inception3()input1 = torch.rand([1, 3, 299, 299])output = inception3(input1)print(output.shape)